无机与稀土化学研究部黄春辉课题组在稀土配合物电致发光研究中再次取得进展
除铈(III)配合物外,具有d-f跃迁发光性质的稀土铕(II)配合物应用于OLEDs时理论上同样具有显著优点:i)激发态寿命短:d-f跃迁选律允许,寿命在纳秒量级,能显著减少激发态猝灭,从而达到更高的器件亮度和更低的效率滚降;ii)高激子利用率:Eu2+离子在4f65d1到4f7的跃迁属于开壳层电子跃迁,可以利用100%的激子能量;iii)发光颜色可调:5d轨道能量受配体场影响,改变配位环境可轻易调节发射波长;iv)低成本:铕的地壳丰度为10-6 wt%,远高于目前OLED商用发光材料所含的贵金属铱。然而,铕(II)配合物大都空气稳定性差、发光弱,文献中对它们电致发光性质的报道仅有一例。
近期,黄春辉课题组的刘志伟副教授等设计合成了两个Eu(II)配合物Eu-1和Eu-2,其中Eu-1的固体粉末在空气中放置2200小时后仍保持高达91%的光致发光量子产率,而Eu-2应用于OLEDs时被证明具有接近100%的激子利用率,表明Eu(II)配合物既可以实现高空气稳定性,也可以实现高性能电致发光(Angewandte Chemie International Edition, 2020, 59, 19011)。
图1. 四种大环Eu(II)配合物EuX2-Nn (X = Br, I; n = 4, 8)的晶体结构和配位多面体结构
图2. 基于Eu(II)配合物的OLED器件结构示意图和性能曲线
为了在Eu(II)配合物中同时实现高空气稳定性和高电致发光效率,刘志伟副教授等利用大环配体的空间效应和配位相互作用,合成了四种大环Eu(II)配合物EuX2-Nn (X = Br, I; n = 4, 8)。其中,EuX2-N8配合物发射最大波长位于~510 nm的绿光,而EuX2-N4配合物发射最大波长位于~610 nm的橙红光,这可以解释为EuX2-N4配合物中具有较短的Eu-N键长,即较强的配位场使得5d轨道分裂能增加,导致5d-4f跃迁能量降低,发射光谱红移。值得注意的是,EuX2-N8配合物表现出接近100%的光致发光量子产率和良好的空气稳定性,有潜力制备高效率OLEDs。经过器件结构优化,包括选择合适的主体材料、空穴传输材料和电子传输材料,优化各功能层的厚度和发光层掺杂浓度等,基于EuBr2-N8器件的最大外量子效率为15.5%,最大亮度为10200 cd·m-2,基于EuI2-N8器件的最大外量子效率达到17.7%,最大亮度可达25470 cd·m-2,可与具有主流发光材料(如磷光铱配合物、热致延迟荧光材料等)的OLED器件性能媲美。这一工作加深了对Eu(II)配合物的光致发光和电致发光性质的理解,并证明了Eu(II)配合物是一类非常有潜力的高性能OLED发光材料。
上述工作以“Highly efficient and air-stable Eu(II)-containing azacryptates ready for organic light-emitting diodes”为题发表在Nature Communications上,文章链接:https://www.nature.com/articles/s41467-020-19027-x