新闻标题: 《自然•纳米技术》报道超高迁移率二维半导体BOX新发现
发布时间: 2017年6月29日 阅读次数:244    
《自然纳米技术》报道超高迁移率二维半导体BOX新发现
半导体材料是电子信息产业的基石。目前,随着晶体管特征尺寸的缩小,由于短沟道效应等物理规律和制造成本的限制,主流硅基材料与CMOS(互补金属氧化物半导体)技术正发展到10纳米工艺节点而很难提升,摩尔定律可能终结。因此,开发新型高性能半导体沟道材料和新原理晶体管技术,是科学界和产业界的近20年来主流研究方向之一。在众多CMOS沟道材料体系中,相比于一维纳米线和碳纳米管,高迁移率二维半导体的器件加工与传统微电子工艺兼容更好,同时其超薄平面结构可有效抑制短沟道效应,被认为是构筑后硅时代纳电子器件和数字集成电路的理想沟道材料。然而,现有二维材料体系(石墨烯、拓扑绝缘体、过渡金属硫族化合物、黑磷、等等)无法同时满足超高迁移率、合适带隙、环境稳定和可批量制备的现实要求,开发符合要求的高性能二维半导体新材料体系迫在眉睫。
近日,彭海琳教授课题组和合作者首次发现一类同时具有超高电子迁移率、合适带隙、环境稳定和可批量制备特点的全新二维半导体(硒氧化铋,Bi2O2Se),在场效应晶体管器件和量子输运方面展现出优异性能。彭海琳课题组基于前期对拓扑绝缘体(Bi2Se3Bi2Te3)等二维量子材料的系统研究,提出用轻元素部分取代拓扑绝缘体中的重元素,以降低重元素的自旋-轨道耦合等相对论效应,进而调控其能带结构,消除金属性拓扑表面态,获得高迁移率二维半导体。经过材料的理性设计和数年的实验探索,发现了一类全新的超高迁移率半导体型层状氧化物材料Bi2O2Se,并利用化学气相沉积(CVD)法制备了高稳定性的二维Bi2O2Se晶体。基于理论计算和电学输运实验测量,证明Bi2O2Se材料具有合适带隙(~0.8 eV)、极小的电子有效质量(~0.14 m0)和超高的电子迁移率。系统的输运测量表明:CVD制备的Bi2O2Se二维晶体在未封装时的低温霍尔迁移率可高于20000 cm2/V·s,展示了显著的SdH量子振荡行为;标准的Bi2O2Se顶栅场效应晶体管展现了很高的室温表观场效应迁移率(~2000 cm2/V·s)和霍尔迁移率(~450 cm2/V·s)、很大的电流开关比(>106)以及理想的器件亚阈值摆幅(~65 mV/dec)。二维Bi2O2Se这些优异性能和综合指标已经超过了已有的一维和二维材料体系。Bi2O2Se这种高迁移率半导体特性还可能拓展到其他铋氧硫族材料(BOXBi2O2SBi2O2SeBi2O2Te)。结合其出色的环境稳定性和易于规模制备的特点,超高迁移率二维半导体BOX材料体系在构筑超高速和低功耗电子器件方面具有独特优势,有望解决摩尔定律进一步向前发展的瓶颈问题,给微纳电子器件带来新的技术变革,具有重要的基础科学意义和实际应用价值。
   
该研究成果以“High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se”为题发表于201743日的《自然纳米技术》Nature Nanotechnology上(2017, 12, 530-534)。该工作得到了来自科技部和国家自然科学基金委等项目的资助。

科研动态

招聘信息 | 版权说明 | 联系我们